Sarcoplasmic reticulum Ca2+‐induced Ca2+ release regulates class IIa HDAC localization in mouse embryonic cardiomyocytes

نویسندگان

  • Sari Karppinen
  • Sandra L Hänninen
  • Risto Rapila
  • Pasi Tavi
چکیده

In embryonic cardiomyocytes, sarcoplasmic reticulum (SR)-derived Ca2+ release is required to induce Ca2+ oscillations for contraction and to control cardiac development through Ca2+ -activated pathways. Here, our aim was to study how SR Ca2+ release regulates cytosolic and nuclear Ca2+ distribution and the subsequent effects on the Ca2+ -dependent localization of class IIa histone deacetylases (HDAC) and cardiac-specific gene expression in embryonic cardiomyocytes. Confocal microscopy was used to study changes in Ca2+ -distribution and localization of immunolabeled HDAC4 and HDAC5 upon changes in SR Ca2+ release in mouse embryonic cardiomyocytes. Dynamics of translocation were also observed with a confocal microscope, using HDAC5-green fluorescent protein transfected myocytes. Expression of class IIa HDACs in differentiating myocytes and changes in cardiac-specific gene expression were studied using real-time quantitative PCR. Inhibition of SR Ca2+ release caused a significant decrease in intranuclear Ca2+ concentration, a rapid nuclear import of HDAC5 and subnuclear redistribution of HDAC4. Endogenous localization of HDAC5 and HDAC4 was mostly cytosolic and at the nuclear periphery, respectively. Downregulated expression of cardiac-specific genes was also observed upon SR Ca2+ release inhibition. Electrical stimulation of sarcolemmal Ca2+ influx was not sufficient to rescue either the HDAC localization or the gene expression changes. SR Ca2+ release controls subcellular Ca2+ distribution and regulates localization of HDAC4 and HDAC5 in embryonic cardiomyocytes. Changes in SR Ca2+ release also caused changes in expression of the developmental phase-specific genes, which may be due to the changes in HDAC-localization.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Calcium cycling proteins and heart failure: mechanisms and therapeutics.

Ca2+-dependent signaling is highly regulated in cardiomyocytes and determines the force of cardiac muscle contraction. Ca2+ cycling refers to the release and reuptake of intracellular Ca2+ that drives muscle contraction and relaxation. In failing hearts, Ca2+ cycling is profoundly altered, resulting in impaired contractility and fatal cardiac arrhythmias. The key defects in Ca2+ cycling occur a...

متن کامل

Mechanisms of [Ca2+]i transient decrease in cardiomyopathy of db/db type 2 diabetic mice.

Cardiovascular disease is the leading cause of death in the diabetic population. However, molecular mechanisms underlying diabetic cardiomyopathy remain unclear. We analyzed Ca2+-induced Ca2+ release and excitation-contraction coupling in db/db obese type 2 diabetic mice and their control littermates. Echocardiography showed a systolic dysfunction in db/db mice. Two-photon microscopy identified...

متن کامل

Reduced cardiac L-type Ca2+ current in Ca(V)beta2-/- embryos impairs cardiac development and contraction with secondary defects in vascular maturation.

Cardiac myocyte contraction depends on transmembrane L-type Ca2+ currents and the ensuing release of Ca2+ from the sarcoplasmic reticulum. Here we show that these L-type Ca2+ currents are essential for cardiac pump function in the mouse at developmental stages where the functional significance of the heart becomes imperative to blood flow and to the continuing growth and survival of the embryo....

متن کامل

RyR2 Modulates a Ca2+-Activated K+ Current in Mouse Cardiac Myocytes

In cardiomyocytes, Ca2+ entry through voltage-dependent Ca2+ channels (VDCCs) binds to and activates RyR2 channels, resulting in subsequent Ca2+ release from the sarcoplasmic reticulum (SR) and cardiac contraction. Previous research has documented the molecular coupling of small-conductance Ca2+-activated K+ channels (SK channels) to VDCCs in mouse cardiac muscle. Little is known regarding the ...

متن کامل

NADH oxidase activity of rat cardiac sarcoplasmic reticulum regulates calcium-induced calcium release.

NADH and Ca2+ have important regulatory functions in cardiomyocytes related to excitation-contraction coupling and ATP production. To elucidate elements of these functions, we examined the effect of NADH on sarcoplasmic reticulum (SR) Ca2+ release and the mechanisms of this regulation. Physiological concentrations of cytosolic NADH inhibited ryanodine receptor type 2 (RyR2)-mediated Ca2+-induce...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 6  شماره 

صفحات  -

تاریخ انتشار 2018